Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization
Shen Yan,
Xiang Zhong,
Haidong Shao,
Yuhang Ming,
Chao Liu and
Bin Liu
Reliability Engineering and System Safety, 2023, vol. 239, issue C
Abstract:
The current data-level and algorithm-level based imbalanced fault diagnosis methods have respective limitations such as uneven data generation quality and excessive reliance on minority class information. In response to these limitations, this study proposes a novel digital twin-assisted framework for imbalanced fault diagnosis. The framework begins by analyzing the nonlinear kinetic characteristics of the gearbox and establishing a dynamic simulation model assisted by digital twin technology to generate high-fidelity simulated fault data. Subsequently, a subdomain adaptive mechanism is employed to align the conditional distribution of the subdomains by minimizing the dissimilarity of fine-grained features between the simulated and real-world fault data. To improve the fault tolerance of the model's diagnosis, margin-aware regularization is designed by applying significant regularization penalties to the fault data margins. Experimental results from two gearboxes demonstrate that, compared to the recent data-level and algorithm-level based imbalanced fault diagnosis methods, the proposed framework holds distinct advantages under the influence of highly imbalanced data, offering a fresh perspective for addressing this challenging scenario. In addition, the effectiveness of subdomain adaptive mechanism and margin-aware regularization is verified through the ablation experiment.
Keywords: Digital twin; Imbalanced fault diagnosis; Subdomain adaptive mechanism; Margin-aware regularization; Gearbox (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023004362
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:239:y:2023:i:c:s0951832023004362
DOI: 10.1016/j.ress.2023.109522
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().