Label-guided contrastive learning with weighted pseudo-labeling: A novel mechanical fault diagnosis method with insufficient annotated data
Xinyu Li,
Changming Cheng and
Zhike Peng
Reliability Engineering and System Safety, 2025, vol. 254, issue PA
Abstract:
Exploring fault diagnosis methods for mechanical equipment with weak dependency on annotated data is essential for industrial production. Contrastive learning (CL), capable of learning representations without labeling information, has achieved satisfactory performance in mechanical fault diagnosis. However, current CL-based approaches mainly encounter two limitations. First, the pre-training stage uses either unannotated or annotated samples exclusively while the fine-tuning stage solely relies on annotated ones, leading to inefficient sample utilization. Second, the representation learned by contrastive loss alone in the pretext task is sub-optimal for downstream diagnostic tasks. To address these issues, this paper proposed a novel diagnostic framework based on label-guided contrastive learning (LgCL) and weighted pseudo-labeling (WPL) strategy to improve fault diagnosis accuracy. In the pre-training stage, the proposed LgCL integrates two types of contrastive loss together with classification loss, enabling the encoder to learn discriminative representations that directly benefit the downstream diagnostic task. The devised hybrid fine-tuning strategy allows both labeled and unlabeled data to participate in fine-tuning via pseudo-labeling, enhancing model generalization. The pertinently designed WPL strategy mitigates the defect of noisy pseudo labels. Comparison and ablation experiments on two public datasets and one self-designed dataset validate the superiority of the proposed method for fault diagnosis with limited annotated data, with diagnostic accuracies improved by 25.30%, 5.47% and 10.02% over supervised, semi-supervised and contrastive learning methods, respectively.
Keywords: Mechanical fault diagnosis; Insufficient annotated data; Label-guided contrastive learning; Weighted pseudo-labeling; Hybrid fine-tuning (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006689
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006689
DOI: 10.1016/j.ress.2024.110597
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().