Toward the resilience of UAV swarms with percolation theory under attacks
Tianzhen Hu,
Yan Zong,
Ningyun Lu and
Bin Jiang
Reliability Engineering and System Safety, 2025, vol. 254, issue PA
Abstract:
Unmanned aerial swarms have been widely applied across various domains. The security of swarms against attacks has been of significance. However, there still exists a lack of quantitatively assessing the unmanned swarm resilience against attacks. Thus, this work adopts the percolation theory to mathematically analyse the resilience of the unmanned aerial swarms after random attacks. In addition to the typically used popularity in the preferential attachment, distance of neighbours is taken into account for modelling unmanned swarms, which is missing in the literature. This improved preferential attachment-based swarm model offers a more precise and realistic description of swarm behaviours. In addition, an attack model is proposed, which can be a description of dynamic attacks. Moreover, this study also utilizes the percolation theory to assess the resilience of swarms after the random attacks. Finally, the simulation results show that the resilience derived using percolation theory aligns with the improved swarm model. The proposed swarm model maintains 79% resilience when 20% of the UAVs are attacked under random attacks, and even 69.4% resilience when 20% of the UAVs are attacked under initial betweenness-based attacks.
Keywords: Unmanned aerial vehicles; Swarm; Percolation; Resilience (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024006793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006793
DOI: 10.1016/j.ress.2024.110608
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().