Multivariate degradation modeling using generalized cauchy process and application in life prediction of dye-sensitized solar cells
Ali Asgari,
Wujun Si,
Wei Wei,
Krishna Krishnan and
Kunpeng Liu
Reliability Engineering and System Safety, 2025, vol. 255, issue C
Abstract:
Recently, the Generalized Cauchy (GC) process has been applied to capture a Long Memory (LM) phenomenon in product degradation modeling and life prediction. Compared with the traditional fractional Brownian motion that captures the LM using a single Hurst parameter, the GC process has two free parameters (Hurst and fractal dimension parameters) that flexibly capture both global LM and local irregularity. However, all existing GC-based degradation models are for a single Degradation Characteristic (DC). In this article, motivated by a real degradation problem of dye-sensitized solar cells that jointly exhibits multiple DCs, global LM, local irregularity and DC-wise cross-correlation, we propose a novel GC-based Multivariate Degradation Model (GC-MDM) to simultaneously capture the aforementioned effects. A maximum likelihood estimation approach is developed to estimate parameters of the GC-MDM. Subsequently, product life prediction based on the GC-MDM is developed. The proposed GC-MDM is validated through a simulation study and a physical experiment of dye-sensitized solar cells. Results show that the proposed GC-MDM fundamentally improves the life prediction accuracy in comparison with conventional degradation models which significantly misestimate the uncertainty of product life.
Keywords: Generalized cauchy process; Long memory; Local irregularity; Lifetime prediction; Solar cell (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024007221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007221
DOI: 10.1016/j.ress.2024.110651
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().