Machine remaining useful life prediction method based on global-local attention compensation network
Zhixiang Chen
Reliability Engineering and System Safety, 2025, vol. 255, issue C
Abstract:
Accurate remaining useful life (RUL) prediction is essential for ensuring the safe operation of machinery. The extraction of high-level features that contain both global dependencies and local refinements can effectively improve the accuracy of RUL predictions. In order to extract high-level features, this paper proposes a global-local attention compensation network (GLACN) for RUL prediction. The proposed network integrates a global interaction-feature (GIF) mechanism, a long short-term memory network (LSTM), and a local attention enhanced residual compensation (LAERC) mechanism. Initially, the GIF mechanism is used to processed selected signals from multiple sensors to facilitate global information interaction and allocate channel attention weights. Subsequently, the LSTM is employed to extract global temporal features and establish long-term dependencies among them. Finally, the global temporal features extracted by LSTM are further refined by LAERC to mine local features. To address the potential weakening of long-term dependencies during feature refinement, the global temporal features from the last hidden layer of LSTM are utilized as compensation, concatenated with refined features to generate final features. The effectiveness of the designed model for RUL prediction is tested by two benchmark datasets. The results illustrate that the prediction performance of the GLACN outperforms some of some state-of-the-art (SOTA) methods.
Keywords: Remaining useful life (RUL) prediction; Attention mechanism; Global feature interaction; Residual block; Feature compensation; Deep learning (DL) (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024007233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007233
DOI: 10.1016/j.ress.2024.110652
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().