EconPapers    
Economics at your fingertips  
 

A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems

Ramin Talebi Khameneh, Kash Barker and Jose Emmanuel Ramirez-Marquez

Reliability Engineering and System Safety, 2025, vol. 255, issue C

Abstract: Transportation infrastructure networks are prone to disruptions, most of which are beyond control. However, the spread of disinformation can worsen downtime in these systems by indirectly causing disruptions, such as station closures or rerouting of services based on false reports. The relationship between disinformation and the service disruptions is very important with reference to enhancing the resilience of transportation systems. This paper contributes to the field by applying artificial intelligence techniques to analyze how disinformation impacts service disruptions, particularly focusing on the Port Authority Trans-Hudson (PATH) system in New Jersey and New York, providing insights for improving operational responsiveness. The disruption operational impacts of disinformation are analyzed using several data sources, including schedules, ridership reports, and real-time alerts. A machine learning-based K-means algorithm framework is applied to cluster disruption alerts from social media. Disruption scenarios dominated by disinformation are identified using advanced natural language processing (NLP) methods, specifically BERTopic and Latent Dirichlet Allocation (LDA) topic modeling techniques. A Monte Carlo simulation is applied to quantify the effects of this dominant disinformation-induced disruption scenario on the commuter time and costs. This study reveals that disinformation significantly influences infrastructure reliability and points out the necessity for effective strategies to combat its impacts. The findings reveal the importance of transportation disruptions to the functioning of the transportation system and emphasize the need for robust measures to reduce the adverse effects, hence making the system to be more resilient and secure in the public’s perception.

Keywords: Disinformation; K-means clustering; BERTopic; Latent dirichlet allocation; Monte Carlo simulation; Public transit resilience (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024007270
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007270

DOI: 10.1016/j.ress.2024.110656

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007270