EconPapers    
Economics at your fingertips  
 

An integrated dual-scale similarity-based method for bearing remaining useful life prediction

Wenjie Li, Dongdong Liu, Xin Wang, Yongbo Li and Lingli Cui

Reliability Engineering and System Safety, 2025, vol. 256, issue C

Abstract: As a pivotal technology of Prognostic and Health Management, the remaining useful life (RUL) prediction techniques significantly contribute to predictive maintenance and ensure the safe operation of mechanical equipment. Nevertheless, the current similarity-based prediction (SBP) methods face challenges in effectively utilizing the degradation information encapsulated within a limited number of degradation samples. Therefore, an integrated dual-scale similarity-based prediction (IDS-SBP) method is proposed bearing RUL prediction, which can fully mine the degradation information of the samples from two distinct time scales. Specifically, a whole lifecycle dynamic model is constructed to describe the various long-term degradation processes for bearings, which enriches the variety of the performance degradation samples. Subsequently, the dual-scale matching strategy is designed to extract the degradation information from two different time scales. Meanwhile, the designed lifetime calibration technique can calibrate the lifetime of samples by considering the degradation rate. Finally, the uncertainty analysis is conducted to integrate the prediction results at different time scales, thereby achieving the comprehensive evaluation of test bearings. Several sets of experimental data are applied to verify the prediction performance of the proposed method, and prediction results confirm that the proposed method achieves great prediction accuracy and superior generalization ability.

Keywords: Degradation process; Remaining useful life; Rolling bearings; Similarity-based method (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024008585
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008585

DOI: 10.1016/j.ress.2024.110787

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008585