EconPapers    
Economics at your fingertips  
 

Development of a CNN-based integrated surrogate model in evaluating the damage of buried pipeline under impact loads, considering the soil spatial variability

Fengyuan Jiang and Sheng Dong

Reliability Engineering and System Safety, 2025, vol. 257, issue PA

Abstract: Determining the burial depth for offshore pipelines to resist impact load is challenging owing to the spatial variability of soil strengths, which proves to significantly affect failure behaviours of soils and pipelines. To facilitate the design, accurate and fast evaluation on pipeline damage is required. Here, an integrated surrogate model was developed to forecast impact damage of pipelines buried in spatially varied soils. Through coupling the random field and numerical simulation, a stochastic finite element analysis framework was derived and verified to yield the datasets; Based on the scheme of feature extraction – integration from convolution neural network, the surrogate model was established, which mapped the three-dimensional soil spatial field to the structural response. Prediction mechanism of the developed model was explored, where correlations among soil spatial distribution patterns, failure mechanisms and feature recognitions were discussed. The models enabled to capture the key features representing the failure mechanisms under random soil conditions, including the local failure mode of soil and pipe-soil interactions, which theoretically explained its feasibility in damage estimation. Further, model performance was comprehensively evaluated with regard to prediction accuracy, uncertainty quantification, and transfer learning, and the corresponding causes were investigated. Satisfactory performance and high computation efficiency were demonstrated.

Keywords: Convolution neural network; Soil spatial variability; Offshore pipeline; Impact load; Failure mechanism (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025000043
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000043

DOI: 10.1016/j.ress.2025.110801

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000043