EconPapers    
Economics at your fingertips  
 

A hybrid physics informed predictive scheme for predicting low-cycle fatigue life and reliability of aerospace materials under multiaxial loading conditions

Butong Li, Junjie Zhu and Xufeng Zhao

Reliability Engineering and System Safety, 2025, vol. 257, issue PA

Abstract: Engineering components such as engine blades, turbofans, external parts, etc., are often subjected to complex loads in the serving environment. Fatigue failure of components under multiaxial loading will occur, causing a severe influence on operational safety. Centered on low-cycle fatigue under multiaxial loading conditions, we have developed a novel fatigue life prediction framework, which utilizes the physics-guided machine learning approach as a surrogate model for fatigue life prediction. We conducted preliminary experiments to obtain the material's mechanical properties and established reliable finite element analysis (FEA) models based on these properties. Subsequently, we generated high-confidence datasets using the FEA models. By leveraging the strengths of both deep learning methods and LightGBM, we proposed a fusion surrogate model called DL-LGBM-DRS. The DL-LGBM-DRS can efficiently and accurately predict low-cycle fatigue life under various multiaxial loading conditions. Lastly, we defined a new fatigue life degradation relationship, KBM-N, using Brown-Miller parameters and fitted probabilistic fatigue life degradation curves based on the KBM-N relations.

Keywords: Multiaxial loading; Fatigue life prediction; Finite element analysis; DL-LGBM-DRS; Fatigue reliability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025000419
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000419

DOI: 10.1016/j.ress.2025.110838

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000419