Optimal allocation of defensive resources in regional railway networks under intentional attacks
Benwei Hou,
Pengxu Chen,
Xudong Zhao and
Zhilong Chen
Reliability Engineering and System Safety, 2025, vol. 257, issue PB
Abstract:
Railway network is one of the busiest regional transportation infrastructures, which is exposed to a high risk of intentional attacks. Given the railway network stations have a larger service area, attackers may have different biases toward the valuation of railway stations or lines. This paper proposes a method for optimally allocating defensive resources based on a Bayesian game model and a comprehensive importance evaluation model of stations by multi-layer network models, aiming to reduce the losses of defenders. The attack strategy was made according to the importance of railway stations evaluated by three-layer network models, namely topology layer, the ridership layer and the travel time layer, which depict the features of railway networks and also reflect the variety of attacker's biases. The optimal allocation of defensive resources was obtained under the Nash equilibrium of Bayesian game. The proposed method is implemented in a regional railway network in north China, and the case network's risk under various attack strategies were compared to validate the applicability of this model. The application results show that the optimal defensive resources allocation based on the importance evaluation by three-layer models has the lowest risk considering the variety in the attacker's biases.
Keywords: Intentional attack; Attack-defense game; Resource allocation; Complex network; Nash equilibrium (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025000675
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000675
DOI: 10.1016/j.ress.2025.110864
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().