EconPapers    
Economics at your fingertips  
 

SIGTN: A novel structural Infomax Graph Transfer Networks for rotating machinery fault diagnosis in cross-condition and cross-equipment scenarios

Kongliang Zhang, Hongkun Li, Shunxin Cao, Chen Yang and Wei Xiang

Reliability Engineering and System Safety, 2025, vol. 258, issue C

Abstract: Graph-based networks have proven effective in node classification for diagnosing faults in rotating machinery. However, current graph neural networks often prioritize local information over global influences, hindering cross-graph transfer diagnosis in unlabeled graphs. To address these challenges, we propose SIGTN (Structure Infomax Graph Transfer Network), a novel algorithm for cross-graph diagnosis. Initially, raw and corrupted graph data is individually fed into the feature extractor, enhancing learned node representations to capture global structural properties by maximizing local-global mutual information. The node classifier then predicts labels based on these representations. During training process, both the feature extractor and node classifiers are trained concurrently to minimize cross-entropy loss for labeled nodes. Additionally, a conditional domain adversarial network alleviates distributional disparities between source and target domain graphs. Finally, experimental validation across various datasets demonstrates SIGTN's effectiveness in handling cross-graph transfer across different rotation speeds, loads, and equipment.

Keywords: Domain adaptation; Cross graph classification; Graph convolution networks; Unsupervised learning; Local-global mutual information; Fault diagnosis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025001012
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001012

DOI: 10.1016/j.ress.2025.110898

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001012