EconPapers    
Economics at your fingertips  
 

AGFCN:A bearing fault diagnosis method for high-speed train bogie under complex working conditions

Deqiang He, Jinxin Wu, Zhenzhen Jin, ChengGeng Huang, Zexian Wei and Cai Yi

Reliability Engineering and System Safety, 2025, vol. 258, issue C

Abstract: The operating conditions of high-speed train bogie (HSTB) bearings are sophisticated and changeable, making the nonlinear characteristics of bearing vibration signals more prominent and the noise in the signals more significant. To fully obtain the characteristic information in the vibration signal and improve the accuracy of HSTB bearing fault diagnosis, this paper fully considers the working conditions of HSTB bearing with intense noise and variable load. A fault diagnosis framework of adaptive graph framelet convolutional network (AGFCN) is proposed. Firstly, the vibration signal is constructed into a graph to obtain the characteristic information between the sample topologies. To better adapt to the complex and changeable working conditions of HSTB bearings, a neural network with learnable weight vectors is proposed to achieve a dynamic learning graph structure. Then, considering the practical factors of harrowing fault feature extraction in an intense noise background, a graph convolution based on framelet transform is designed. The framelet transform technology is used to reduce the signal interference and increase the model's feature learning capability. Finally, the actual data of the HSTB bearing test bench verify the reliability of AGFCN, which has significant advantages compared with six advanced models.

Keywords: Bogie bearings; Adaptive graph framelet convolutional network; Intense noise; Fault diagnosis; Complex conditions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025001103
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001103

DOI: 10.1016/j.ress.2025.110907

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001103