A new multi-layer performance analysis of unmanned system-of-systems within IoT
Kaixuan Wang,
Tingdi Zhao,
Yuan Yuan,
Zhenkai Hao,
Zhiwei Chen and
Hongyan Dui
Reliability Engineering and System Safety, 2025, vol. 259, issue C
Abstract:
Internet of Things (IoT)-enabled unmanned system-of-systems (USoS) is vital in disaster management, rescue operations, and military missions. However, research on performance loss and improvement strategies of USoS under multiple shocks has been limited. Thus, evaluating performance loss and developing improvement strategies for USoS is critical to boosting mission capability and efficiency. This paper presents a multi-layer performance analysis method for USoS within the IoT framework. Firstly, we established a multi-layer USoS structure, dividing it into physical, communication, and command layers to address variable performance and mission baselines. Secondly, an USoS performance loss model is established based on the degradation-threshold-shock models and the signal-to-noise-and-interference ratio to enhance USoS performance evaluation accuracy. Thirdly, performance improvement strategies of USoS are proposed by combining the observe, orient, decide, and act (OODA) loop with the minimum cost maximum flow theory to optimize resource allocation and reconfigure emergency links. Finally, a sea-air collaborative USoS serves as a case study to validate the efficacy of the proposed method, showing significant post-implementation performance gains, and offering a reference for mitigating performance loss and enhancing reliability during multiple shocks.
Keywords: Reliability; Performance; Unmanned system; Internet of Things, System-of-systems (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025001565
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001565
DOI: 10.1016/j.ress.2025.110953
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().