Coloured Petri Nets-based Approach for Modelling Effects of Variation on the Reliability of the Newborn Life Support Procedure
Alfian Tan,
Rasa Remenyte-Prescott,
Joy Egede,
Don Sharkey and
Michel Valstar
Reliability Engineering and System Safety, 2025, vol. 260, issue C
Abstract:
About 10 % of newborns need a life support procedure following birth. However, this procedure has a considerable error rate of more than 25 %, which may compromise its safety and reliability. Continuous studies to improve its performance are carried out, but in-field studies can be expensive and not always feasible. Hence, a modelling approach is proposed. Studies have shown how variations and errors in this procedure are associated with technical and non-technical factors. Thus, the proposed approach includes these aspects by considering different settings of thermal care, the experience of the doctor, types of respiratory devices, and the ability of the clinical staff to cope with stress. The Coloured Petri Nets (CPNs) approach is used to model the characteristics of this Newborn Life Support (NLS) procedure. This technique can facilitate complex system modelling with a compact representation. The dynamic characteristics of the procedure are implemented during a simulation of the CPNs model. These relate to the duration of steps, the baby's physical response, and variations or errors from the required protocol. This paper demonstrates how risks in the protocol relating to the baby's final condition and clinical decision inaccuracies can be quantified by the approach.
Keywords: Newborn Life Support; Patient safety; Healthcare modelling; Coloured Petri Nets (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025002029
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002029
DOI: 10.1016/j.ress.2025.111001
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().