EconPapers    
Economics at your fingertips  
 

Enhancing power grid resilience during tropical cyclones: Deep learning-based real-time wind forecast corrections for dynamic risk prediction

You Wu, Naiyu Wang, Xiubing Huang and Zhenguo Wang

Reliability Engineering and System Safety, 2025, vol. 263, issue C

Abstract: Tropical cyclones (TCs) pose severe risks to power transmission systems, yet conventional Numerical Weather Prediction (NWP) models lack the resolution to resolve sub-kilometer wind dynamics critical for infrastructure risk assessment. This study introduces a Real-time Wind Forecast Correction (RWFC) model, a deep learning framework that dynamically refines mesoscale NWP forecasts during TCs by assimilating multi-source observational data. The RWFC integrates Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN-BiLSTM) to capture spatiotemporal wind-terrain interactions, with a custom loss function balancing accuracy and conservative bias for proactive risk mitigation. Validated during Typhoon Hagupit (2020) in Zhejiang Province, China, the RWFC reduced wind speed and direction mean absolute errors (MAE) by 78 % (6.47 to 1.41 m/s) and 50 % (53.57° to 26.79°), respectively, compared to raw NWP forecasts. By interpolating corrections from sparse observational sites, it achieved province-scale MAE reductions of 56 %, demonstrating robust generalizability. When applied to Zhejiang’s transmission grid, RWFC lowered the number of projected high-risk towers by 98 %, enabling precise, terrain-sensitive risk predictions. The framework bridges NWP’s physical rigor with deep learning’s adaptive capacity, offering a scalable solution for enhancing grid resilience during evolving TCs. This work advances real-time disaster management by transforming coarse forecasts into actionable, high-resolution risk insights for critical infrastructure.

Keywords: Tropical cyclones; Wind forecast correction; Deep learning; Risk prediction; Transmission system resilience; Real-time data assimilation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832025004855
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004855

DOI: 10.1016/j.ress.2025.111284

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004855