Model carbon materials derived from tannin to assess the importance of pore connectivity in supercapacitors
J. Castro-Gutiérrez,
N. Díez,
M. Sevilla,
M.T. Izquierdo,
A. Celzard and
V. Fierro
Renewable and Sustainable Energy Reviews, 2021, vol. 151, issue C
Abstract:
A surfactant-water-assisted mechanochemical mesostructuration method is used to produce model carbon materials with a disordered or ordered mesoporous structure (DMCs or OMCs, respectively) from a sustainable precursor, mimosa tannin. These model materials, differing only in their mesoporous structure, allow assessing the importance of the connectivity of the micro-mesopore network on the electrochemical performance of the resultant supercapacitors (SCs). Connectivity is studied through the scanning of hysteresis loops from nitrogen adsorption-desorption isotherms and, contrary to what it is suggested in the literature, order is not always beneficial for the performance of SCs. A thorough review of the open literature and comparison with our electrodes led us to conclude that CO2-activated DMCs and OMCs are among the best materials reported so far, as they exhibit excellent SC behavior, high-rate capability, and long-term stability in aqueous and organic electrolytes. It is showed that ordered mesopores improve the diffusion of the small-size ions of the aqueous electrolyte and hence favor a better performance at high charging rates, resulting in a 12% higher capacitance retention at 80 A g−1 when compared to that obtained with the disordered materials. However, the more interconnected porosity of the disordered materials allows better diffusion of large-size ions, thus improving the electrochemical performance in the organic electrolyte by 15% at 40 A g−1.
Keywords: Mesoporous carbons; Pore connectivity; CO2 activation; Hysteresis scanning; Supercapacitors; Tannin (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121008765
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008765
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111600
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().