Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions
Iskander Tlili
Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 4, 2234-2241
Abstract:
Maximum power and efficiency at the maximum power point of an endoreversible Stirling heat engine with finite heat capacitance rate of external fluids in the heat source/sink reservoirs with regenerative losses are treated. It was found that the thermal efficiency depends on the regenerator effectiveness and the internal irreversibility resulting from the working fluid for a given value of reservoir temperature. It was also concluded that it is desirable to have larger heat capacity of the heat sink in comparison to the heat source reservoir for higher maximum power output and lower heat input.
Keywords: Stirling engine; Finite time thermodynamic; Endoreversible; Power output; Thermal efficiency; Regenerator effectiveness (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032112000238
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:4:p:2234-2241
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2012.01.022
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().