A review of solar energy modeling techniques
Tamer Khatib,
Azah Mohamed and
K. Sopian
Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 5, 2864-2869
Abstract:
Solar radiation data provide information on how much of the sun's energy strikes a surface at a location on the earth during a particular time period. These data are needed for effective research in solar-energy utilization. Due to the cost of and difficulty in solar radiation measurements and these data are not readily available, alternative ways of generating these data are needed. In this paper, a review is made on the solar energy modeling techniques which are classified based on the nature of the modeling technique. Linear, nonlinear, artificial intelligence models for solar energy prediction have been considered in this review. The outcome of the review showed that the sunshine ratio, ambient temperature and relative humidity are the most correlated coefficients to solar energy.
Keywords: Solar energy; Solar radiation; Modeling; ANN (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032112000767
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:5:p:2864-2869
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2012.01.064
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().