EconPapers    
Economics at your fingertips  
 

An overview of the effect of lubricant on the heat transfer performance on conventional refrigerants and natural refrigerant R-744

Chi-Chuan Wang, Armin Hafner, Cheng-Shu Kuo and Wen-Der Hsieh

Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 7, 5071-5086

Abstract: This review provides an overview of the lubricant on the heat transfer performance, including nucleate boiling, convective boiling, shell side condensation, forced convective condensation, and gas cooling, for conventional refrigerants and natural refrigerant R-744. Various parameters affecting the heat transfer coefficient subject to lubricant, such as oil concentration, heat flux, mass flux, vapor quality, geometric configuration, saturation temperature, thermodynamic and transport properties are discussed in this overview. It appears that the effect of individual parameter on theProd. Type: FTP heat transfer coefficient may be different from studies to studies. This is associated with the complex nature of lubricant and some compound effect accompanying with the heat transport process. In this review, the authors try to summarize the general trend of the lubricant on the heat transfer coefficient, and to elaborate discrepancies of some inconsistent studies. The lubricant can, increase or impair the heat transfer performance depending on the oil concentration, surface tension, surface geometry, and the like. For the condensation, it is more well accepted that the presence of lubricant normally will impair the heat transfer performance due to deposited oil film. However, the deterioration is comparatively smaller than that in nucleate/convective boiling. For the effect of lubricant on R-744 with convective evaporation, the general behavior is in line with the convectional refrigerant. For gas cooling, the lubricant cast significant effect on heat transfer coefficient especially for a higher mass flux or at a smaller diameter tube.

Keywords: Refrigerant; Lubricant; Heat transfer coefficient; Gas cooling; Boiling; Condensation (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032112003516
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:7:p:5071-5086

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2012.04.054

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5071-5086