Indoor environment PV applications: Estimation of the maximum harvestable power
Severine Wiysahnyuy Yufenyuy,
Ghislain Mengounou Mengata,
Leandre Nneme Nneme and
Umaru Mohammed Bongwirnso
Renewable and Sustainable Energy Reviews, 2024, vol. 193, issue C
Abstract:
The use of PV modules for powering sensors in an indoor environment requires that, during the design process, the harvestable power be evaluated and compared with the power requirements of the load device to validate their compatibility for a given type of light source and level of illumination. The models reported recently to relate power to illumination during power estimation are seen to result in large estimation errors in the case of an indoor environment. This paper seeks to propose an appropriate model that can be exploited during maximum power estimation in an indoor environment to relate power to illumination level. Proceeding from fitting measured data to the three-diode model of the PV module and based on the errors and execution time, the Grey Wolf Optimisation Algorithm, among others, proved to be accurate for estimating maximum power. The relationship between maximum power and illumination was seen to take the form of a second-degree polynomial. This was validated by comparing the values of power estimated by this model to the measured values as well as values estimated with the linear model, the exponential model, and the model proposed by Joseph Amajama. The proposed model proved to be more accurate than the models reported, recording errors of not more than 5 %, which is acceptable for system design. This will go a long way towards facilitating the design of indoor energy harvesting systems that can be used for powering smart sensors and other IoT devices.
Keywords: Harvestable maximum power; Indoor environment; Metaheuristics optimisation; Model; PV modules; Smart sensors (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124000108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:193:y:2024:i:c:s1364032124000108
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.114287
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().