EconPapers    
Economics at your fingertips  
 

Economic and environmentally efficient biochar production via microwave-assisted co-torrefaction of fruit residue and waste oil

Yi Li Lin, Nai Yun Zheng, Wei Hsiu Lin and Chao Chin Chang

Renewable and Sustainable Energy Reviews, 2025, vol. 209, issue C

Abstract: Addressing climate change and reducing greenhouse gas (GHG) emissions are critical global challenges. This study introduces a novel, cost-effective method to produce high-energy biochar with minimal GHG emissions through a microwave-assisted (MWA) co-torrefaction process. This groundbreaking process not only produces decarbonized solid fuel but also simultaneously reduces waste by utilizing fruit residues and waste cooking oil (WCO). Through the application of the Taguchi experimental method, this research identified torrefaction temperature and the WCO blending ratio as key determinant of the biochar higher heating value (HHV). Notably, Dimocarpus longan waste (DLw) outperformed Citrus maxima branches (CMb) in co-torrefaction, achieving a maximum HHV of 25 MJ/kg, a superior energy yield of 85%, and a fixed carbon content of 28%. Both types of biochar showed increased thermal stability under optimal conditions, meeting the specifications of bituminous coal and offering a viable alternative for coal combustion. The biochar produced from both CMb and DLw demonstrated good energy return on investment (EROI) values of 4–5 and reduced CO2 emissions by 58%–69% compared to burning bituminous coal alone. Remarkably, the cost of implementing this innovative technology at a pilot scale was 76% lower than that traditional biowaste treatment methods. In conclusion, the pioneering MWA co-torrefaction technology presented in this study offers an environmentally friendly, economically advantageous, and highly practical solution for converting biowaste into renewable fuel, aligning with the Sustainable Development Goals (SDGs), particularly Goal 7: Affordable and Clean Energy, and Goal 13: Climate Action.

Keywords: Microwave co-torrefaction; Waste-to-energy conversion; Renewable energy; Energy return on investment (EROI); Greenhouse gas (GHG) reduction; Cost-effectiveness (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124008268
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008268

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.115100

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008268