Data-driven wind farm flow control and challenges towards field implementation: A review
Tuhfe Göçmen,
Jaime Liew,
Elie Kadoche,
Nikolay Dimitrov,
Riccardo Riva,
Søren Juhl Andersen,
Alan W.H. Lio,
Julian Quick,
Pierre-Elouan Réthoré and
Katherine Dykes
Renewable and Sustainable Energy Reviews, 2025, vol. 216, issue C
Abstract:
Data-driven wind farm flow control (WFFC) is an innovative approach that leverages the collected data and advanced analytics to enhance the performance of wind turbines within wind farms. Its significance lies in its ability to adapt to changing wind and turbine conditions and improve operations, boosting energy yield, extending turbine/component lifetime, and potentially reducing socio-environmental impact and costs, thus supporting the viability and sustainability of wind energy as a renewable power source. This review explores the dynamic field of data-driven WFFC and its challenges towards practical implementation. Building on top of traditional wind farm modelling and model-based control, it details the virtues and limitations of these methods while introducing the concept of data-informed or data-driven flow models that harness data to augment predictive accuracy and control strategies. The analysis then covers the methodologies for power and load surrogates, elucidating the pivotal role of surrogate modelling in enhancing WFFC, and showcasing its value in decision-making and energy optimisation. Furthermore, the growing field of reinforcement learning (RL) is highlighted, showcasing its adaptive potential to revolutionise wind farm control through learning from past interactions. The investigation concludes by identifying key challenges impeding the practical deployment of data-driven WFFC, including data quality concerns, cybersecurity risks, and limitations of the current algorithms. In summary, this comprehensive review presents the ongoing development of data-driven WFFC, emphasising the synergy between traditional methods, surrogate modelling, RL, and the critical challenges to be addressed for successful integration of these methodologies in real-world wind farm operations.
Keywords: Wind farm control; Flow control; Wake control; Data-driven modelling; Surrogate modelling (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125002783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125002783
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115605
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().