Mechanisms, technical optimization, and perspectives in the recycling and reprocessing of waste wind turbine blades: A review
Leilei Cheng,
Ruizhe Chen,
Jialiang Yang,
Xueru Chen,
Xinyu Yan,
Jing Gu,
Zejian Liu,
Haoran Yuan and
Yong Chen
Renewable and Sustainable Energy Reviews, 2025, vol. 218, issue C
Abstract:
Wind energy plays a key role in reducing carbon emissions in the power industry, but current recycling methods for waste wind turbine blades (WTBs) remain unsustainable. This paper reviews the principles, technologies, and potential applications of WTB recycling. It combines fundamental research with an engineering perspective to assess interdependencies across processing stages. Physical methods, such as cutting structural materials and grinding fillers, still face challenges in final waste disposal. Chemical methods, including pyrolysis with product upgrading, solvolysis, and selective deconstruction using liquid-phase catalysts, enable integrated recovery of organic and fiber products but face issues with heat and mass transfer. Moreover, chemical recycling processes must minimize energy consumption, costs, and emissions, while ensuring the separation of chemicals that meet market standards. Additionally, developing deconstruction-functionalization routes to produce higher-value chemicals is crucial. We explore fiber loss mechanisms, mainly due to wear at cutting points, high-temperature hotspots (pyrolysis-oxidation), and chemical reagent-induced leaching of fiber components. We also examine various applications for high-strength and degraded fibers, balancing the integrated recycling of high-value organic products and fibers. Beyond basic research, we discuss the potential of pilot-scale processing equipment and its scalability. In the short term, scalable, cost-effective, and environmentally friendly technologies are essential. In the long term, we recommend developing electrified composite manufacturing and recycling models using locally sourced renewable energy, along with designing new resins for controlled degradation and multi-field coupled deconstruction.
Keywords: Waste wind turbine blades; Deconstruction; Chemical recycling; Pyrolysis; Solvolysis; Catalytic upgrading; Electrification (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125005076
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:218:y:2025:i:c:s1364032125005076
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115834
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().