Forecasting volatility of Bitcoin
Lykke Øverland Bergsli,
Andrea Falk Lind,
Peter Molnár and
Michał Polasik
Research in International Business and Finance, 2022, vol. 59, issue C
Abstract:
Since Bitcoin price is highly volatile, forecasting its volatility is crucial for many applications, such as risk management or hedging. We study which model is the most suitable for forecasting Bitcoin volatility. We consider several GARCH and two heterogeneous autoregressive (HAR) models and compare them. Since we utilize realized variance estimated from high frequency data as a proxy for true volatility, we can draw sharper conclusions than studies which use only daily data. We find that EGARCH and APARCH perform best among the GARCH models. HAR models based on realized variance perform better than GARCH models based on daily data. Superiority of HAR models over GARCH models is strongest for short-term volatility forecasts.
Keywords: Bitcoin; Volatility forecasting; Realized variance; HAR; GARCH (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0275531921001616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:riibaf:v:59:y:2022:i:c:s0275531921001616
DOI: 10.1016/j.ribaf.2021.101540
Access Statistics for this article
Research in International Business and Finance is currently edited by T. Lagoarde Segot
More articles in Research in International Business and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().