Testing models of complexity aversion
Konstantinos Georgalos and
Nathan Nabil
Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), 2025, vol. 116, issue C
Abstract:
In this study we aim to test behavioural models of complexity aversion. In this framework, complexity is defined as a function of the number of outcomes in a lottery. Using Bayesian inference techniques, we re-analyse data from a lottery-choice experiment. We quantitatively specify and estimate adaptive toolbox models of cognition, which we rigorously test against popular expectation-based models; modified to account for complexity aversion. We find that for the majority of the subjects, a toolbox model performs best both in-sample, and with regards to its predictive capacity out-of-sample, suggesting that individuals resort to heuristics in the presense of extreme complexity.
Keywords: Complexity aversion; Toolbox models; Heuristics; Risky choice; Bayesian modelling (search for similar items in EconPapers)
JEL-codes: C91 D81 D91 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2214804325000217
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceco:v:116:y:2025:i:c:s2214804325000217
DOI: 10.1016/j.socec.2025.102354
Access Statistics for this article
Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics) is currently edited by Pablo Brañas Garza
More articles in Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().