A minimum expected response model: Formulation, heuristic solution, and application
Hari K. Rajagopalan and
Cem Saydam
Socio-Economic Planning Sciences, 2009, vol. 43, issue 4, 253-262
Abstract:
Responding to true emergencies in the shortest possible time saves lives, prevents permanent injuries and reduces suffering. Most covering models consider an emergency cover if an ambulance is available within a given time or distance threshold. From a modeling perspective, shorter or longer responses within this threshold are all tallied as covered; conversely, the emergencies immediately outside the threshold are considered uncovered. However, if the shorter responses are given more weight along with the volume of such incidents, while still meeting system-wide coverage requirements, both customers and providers can benefit from reduced response times. We formulate a model to determine the locations for a given set of ambulances to minimize the system-wide expected response distances while meeting coverage requirements. We solve the model with a heuristic search algorithm and present computational and comparative statistics using data from an existing Emergency Medical Services agency.
Keywords: Location; problem; Emergency; response; Hypercube; model; Healthcare; services (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038-0121(08)00066-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:43:y:2009:i:4:p:253-262
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().