EconPapers    
Economics at your fingertips  
 

A minimum expected response model: Formulation, heuristic solution, and application

Hari K. Rajagopalan and Cem Saydam

Socio-Economic Planning Sciences, 2009, vol. 43, issue 4, 253-262

Abstract: Responding to true emergencies in the shortest possible time saves lives, prevents permanent injuries and reduces suffering. Most covering models consider an emergency cover if an ambulance is available within a given time or distance threshold. From a modeling perspective, shorter or longer responses within this threshold are all tallied as covered; conversely, the emergencies immediately outside the threshold are considered uncovered. However, if the shorter responses are given more weight along with the volume of such incidents, while still meeting system-wide coverage requirements, both customers and providers can benefit from reduced response times. We formulate a model to determine the locations for a given set of ambulances to minimize the system-wide expected response distances while meeting coverage requirements. We solve the model with a heuristic search algorithm and present computational and comparative statistics using data from an existing Emergency Medical Services agency.

Keywords: Location; problem; Emergency; response; Hypercube; model; Healthcare; services (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038-0121(08)00066-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:43:y:2009:i:4:p:253-262

Access Statistics for this article

Socio-Economic Planning Sciences is currently edited by Barnett R. Parker

More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:soceps:v:43:y:2009:i:4:p:253-262