Staffing models for covert counterterrorism agencies
Edward H. Kaplan
Socio-Economic Planning Sciences, 2013, vol. 47, issue 1, 2-8
Abstract:
This article presents staffing models for covert counterterrorism agencies such as the New York City Police Department, the US Federal Bureau of Investigation, Britain's Security Service or the Israeli Shin Bet. The models ask how many good guys are needed to catch the bad guys, and how should agents be deployed? Building upon the terror queue model of the detection and interdiction of terror plots by undercover agents, the staffing models developed respond to objectives such as: prevent a specified fraction of terror attacks, maximize the benefits-minus-costs of preventing attacks, staff in expectation that smart terrorists will attack with a rate that optimizes their outcomes, and allocate a fixed number of agents across groups to equalize detection rates, or prevent as many attacks as possible, or prevent as many attack casualties as possible. Numerical examples based on published data describing counterterrorism operations in the United States and Israel are provided throughout.
Keywords: Counterterrorism; Staffing models; Terror queues; Resource allocation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012112000547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:47:y:2013:i:1:p:2-8
DOI: 10.1016/j.seps.2012.09.006
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().