Soil texture prediction via reduced K-means Principal Component Multinomial Regression
Antonio Lucadamo,
Pietro Amenta and
Natalia Leone
Socio-Economic Planning Sciences, 2021, vol. 75, issue C
Abstract:
Texture is one of the most important physical property of the soils for its influence on other fundamental properties. It is defined according to particle size distribution, that can be accurately measured in laboratory. However, these measurements are costly and very time consuming, therefore valid alternatives are necessary. In last years some statistical techniques have been used to predict textural classification using values of reflectance spectrometry as explicative variables. The estimation of the model parameters can be not too accurate, affecting prediction when there is multicollinearity among predictors. Another issue can be the great number of explicative variables usually necessary to explain the response. In order to improve the accuracy of the prediction in classification problems under multicollinearity and to reduce the dimension of the problem with continuous covariates, in this paper we introduce a new technique, based on classification and dimension reduction methods. We show how the new proposal can improve the accuracy of prediction, considering a problem concerning the textural classification of soils of Campania region.
Keywords: Soil texture; Chemiometry; Spectrometry; Reflectance; Classification; Multinomial logit model; Multicollinearity; K-means (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012119304793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:75:y:2021:i:c:s0038012119304793
DOI: 10.1016/j.seps.2020.100871
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().