Network models for cyber attacks evaluation
Silvia Facchinetti,
Silvia Angela Osmetti and
Claudia Tarantola
Socio-Economic Planning Sciences, 2023, vol. 87, issue PB
Abstract:
The significant recent growth in digitization has been accompanied by a rapid increase in cyber attacks affecting all sectors. Thus, it is fundamental to make a correct assessment of the risk to suffer a cyber attack and of the resulting damage. Quantitative loss data are rarely available, while it is possible to obtain a qualitative evaluation on an ordinal scale of the gravity of an attack from experts of the sector. In this paper, we discuss how network models can be useful instruments for the evaluation of the risk associated to a cyber attack. In particular, we consider Bayesian Networks, Random Forests and Social Networks to study different aspects of the examined problem. Along with the description of the methodology, we examine a real set of data regarding serious cyber attacks occurred worldwide before and during the pandemic due to Covid-19. In the analysis, we also investigate how the Covid-19 period had an impact on the cyber risk landscape in terms of frequency and gravity of the observed attacks.
Keywords: Bayesian Network; Cyber risk; DAG; Random Forest; Social Network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012123000848
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012123000848
DOI: 10.1016/j.seps.2023.101584
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().