A multi-stage machine learning model to design a sustainable-resilient-digitalized pharmaceutical supply chain
Mostafa Jafarian,
Iraj Mahdavi,
Ali Tajdin and
Erfan Babaee Tirkolaee
Socio-Economic Planning Sciences, 2025, vol. 98, issue C
Abstract:
The significance of the Pharmaceutical Supply Chain (PSC) has been bolded during the COVID-19 pandemic when the demand for pharmaceutical products has drastically increased. The literature shows that the simultaneous consideration of resilience, sustainability, and digitalization in the PSC network design problem, especially using data-driven approaches, has been ignored by previous works. Hence, the current work aims to cover these gaps by proposing a machine learning-based model to design a PSC with resilience, digitalization, and sustainability dimensions. For this purpose, in the first stage, the potential suppliers are assessed using a Random Forest Regressor (RFR). Afterwards, a mathematical model is developed to design the PSC in which the resilience and sustainability aspects are incorporated. Then, a recently introduced method named Fuzzy Lexicographic Multi-Choice Archimedean-Chebyshev Goal Programming (FLMCACGP) is employed to achieve the optimal solution. To represent the application and efficiency of the developed model, a real-world case study in Iran is examined. It should be noted that the demand for products is estimated using the machine learning approach. Overall, the main novelty of this study is to design a sustainable-resilient-digitalized PSC network using a data-driven model. The model identify the most important indicators for the research problem wherein delivery time, quality, backup supplier, robustness, and cost are the most significant indicators. Furthermore, the proposed mathematical model selects the blockchain-based platform to establish the Information-Sharing System (ISS). The effectiveness of the developed methodology is then assessed by comparing its results with the traditional methods. Finally, managerial insights are offered based on the practical implications of the findings.
Keywords: Pharmaceutical supply chain; Sustainability; Resiliency; Digitalization; Machine learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S003801212500014X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:98:y:2025:i:c:s003801212500014x
DOI: 10.1016/j.seps.2025.102165
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().