On the concentration of Sinai's walk
Pierre Andreoletti
Stochastic Processes and their Applications, 2006, vol. 116, issue 10, 1377-1408
Abstract:
We consider Sinai's random walk in a random environment. We prove that for an interval of time [1,n] Sinai's walk sojourns in a small neighborhood of the point of localization for the quasi-totality of this amount of time. Moreover the local time at the point of localization normalized by n converges in probability to a well defined random variable of the environment. From these results we get applications to the favorite sites of the walk and to the maximum of the local time.
Keywords: Random; environment; Random; walk; Sinai's; regime; Markov; chain; Local; time (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00026-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:10:p:1377-1408
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().