How rich is the class of multifractional Brownian motions?
Stilian A. Stoev and
Murad S. Taqqu
Stochastic Processes and their Applications, 2006, vol. 116, issue 2, 200-221
Abstract:
The multifractional Brownian motion (MBM) processes are locally self-similar Gaussian processes. They extend the classical fractional Brownian motion processes by allowing their self-similarity parameter H[set membership, variant](0,1) to depend on time. Two types of MBM processes were introduced independently by Peltier and Lévy-Vehel [Multifractional Brownian motion: definition and preliminary results, Technical Report 2645, Institut National de Recherche en Informatique et an Automatique, INRIA, Le Chesnay, France, 1995] and Benassi, Jaffard, Roux [Elliptic Gaussian random processes, Rev. Mat. Iber. 13(1) (1997) 19-90] by using time-domain and frequency-domain integral representations of the fractional Brownian motion, respectively. Their correspondence was studied by Cohen [From self-similarity to local self-similarity: the estimation problem, in: M. Dekking, J.L. Véhel, E. Lutton, C. Tricot (Eds.), Fractals: Theory and Applications in Engineering, Springer, Berlin, 1999]. Contrary to what has been stated in the literature, we show that these two types of processes have different correlation structures when the function H(t) is non-constant. We focus on a class of MBM processes parameterized by , which contains the previously introduced two types of processes as special cases. We establish the connection between their time- and frequency-domain integral representations and obtain explicit expressions for their covariances. We show, that there are non-constant functions H(t) for which the correlation structure of the MBM processes depends non-trivially on the value of (a+,a-) and hence, even for a given function H(t), there are an infinite number of MBM processes with essentially different distributions.
Keywords: Fractional; Brownian; motion; Multifractional; Brownian; motion; Correlation; structure; Self-similarity; Local; self-similarity (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00137-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:2:p:200-221
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().