Optimal stopping with irregular reward functions
Damien Lamberton
Stochastic Processes and their Applications, 2009, vol. 119, issue 10, 3253-3284
Abstract:
We consider optimal stopping problems with finite horizon for one-dimensional diffusions. We assume that the reward function is bounded and Borel-measurable, and we prove that the value function is continuous and can be characterized as the unique solution of a variational inequality in the sense of distributions.
Keywords: Optimal; stopping; One-dimensional; diffusions; Irregular; reward; functions (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00093-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:10:p:3253-3284
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().