Biased random walk in a one-dimensional percolation model
Marina Axelson-Fisk and
Olle Häggström
Stochastic Processes and their Applications, 2009, vol. 119, issue 10, 3395-3415
Abstract:
We consider random walk with a nonzero bias to the right, on the infinite cluster in the following percolation model: take i.i.d. bond percolation with retention parameter p on the so-called infinite ladder, and condition on the event of having a bi-infinite path from -[infinity] to [infinity]. The random walk is shown to be transient, and to have an asymptotic speed to the right which is strictly positive or zero depending on whether the bias is below or above a certain critical value which we compute explicitly.
Keywords: Percolation; Random; walk; Asymptotic; speed (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00107-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:10:p:3395-3415
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().