EconPapers    
Economics at your fingertips  
 

Small-time expansions for the transition distributions of Lévy processes

José E. Figueroa-López and Christian Houdré

Stochastic Processes and their Applications, 2009, vol. 119, issue 11, 3862-3889

Abstract: Let X=(Xt)t>=0 be a Lévy process with absolutely continuous Lévy measure [nu]. Small-time expansions of arbitrary polynomial order in t are obtained for the tails , y>0, of the process, assuming smoothness conditions on the Lévy density away from the origin. By imposing additional regularity conditions on the transition density pt of Xt, an explicit expression for the remainder of the approximation is also given. As a byproduct, polynomial expansions of order n in t are derived for the transition densities of the process. The conditions imposed on pt require that, away from the origin, its derivatives remain uniformly bounded as t-->0. Such conditions are then shown to be satisfied for symmetric stable Lévy processes as well as some tempered stable Lévy processes such as the CGMY one. The expansions seem to correct the asymptotics previously reported in the literature.

Keywords: Lévy; processes; Small-time; expansions; of; distributions; Transition; distributions; Transition; densities; estimates (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00153-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:11:p:3862-3889

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:11:p:3862-3889