EconPapers    
Economics at your fingertips  
 

Strong mixing properties of max-infinitely divisible random fields

Clément Dombry and Frédéric Eyi-Minko

Stochastic Processes and their Applications, 2012, vol. 122, issue 11, 3790-3811

Abstract: Let η=(η(t))t∈T be a sample continuous max-infinitely random field on a locally compact metric space T. For a closed subset S⊂T, we denote by ηS the restriction of η to S. We consider β(S1,S2), the absolute regularity coefficient between ηS1 and ηS2, where S1,S2 are two disjoint closed subsets of T. Our main result is a simple upper bound for β(S1,S2) involving the exponent measure μ of η: we prove that β(S1,S2)≤2∫P[η≮S1f,η≮S2f]μ(df), where f≮Sg means that there exists s∈S such that f(s)≥g(s).

Keywords: Absolute regularity coefficient; Max-infinitely divisible random field; Max-stable random field; Central limit theorem for weakly dependent random field (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200141X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:11:p:3790-3811

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.06.013

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:11:p:3790-3811