Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment
Francis Comets,
Mikael Falconnet,
Oleg Loukianov,
Dasha Loukianova and
Catherine Matias
Stochastic Processes and their Applications, 2014, vol. 124, issue 1, 268-288
Abstract:
We consider a one dimensional ballistic random walk evolving in an i.i.d. parametric random environment. We provide a maximum likelihood estimation procedure of the parameters based on a single observation of the path till the time it reaches a distant site, and prove that the estimator is consistent as the distant site tends to infinity. Our main tool consists in using the link between random walks and branching processes in random environments and explicitly characterising the limiting distribution of the process that arises. We also explore the numerical performance of our estimation procedure.
Keywords: Ballistic regime; Branching process in random environment; Maximum likelihood estimation; Random walk in random environment (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002196
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:1:p:268-288
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.08.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().