Asymptotic behavior of central order statistics from stationary processes
Anna Dembińska
Stochastic Processes and their Applications, 2014, vol. 124, issue 1, 348-372
Abstract:
In this paper, we show that central order statistics from strictly stationary and ergodic sequences are strongly consistent estimators of population quantiles provided that the quantiles are unique. We generalize this result to strictly stationary but not necessarily ergodic sequences. We also describe three types of possible asymptotic behavior of central order statistics in the case when the corresponding population quantile is not unique. We give applications of the presented results to linear processes with both absolutely continuous and discrete innovations.
Keywords: Central order statistics; Stationary processes; Linear processes; Quantiles; Conditional quantiles; Almost sure convergence (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:1:p:348-372
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.08.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().