Stable random fields, point processes and large deviations
Vicky Fasen and
Parthanil Roy
Stochastic Processes and their Applications, 2016, vol. 126, issue 3, 832-856
Abstract:
We investigate the large deviation behaviour of a point process sequence based on a stationary symmetric α-stable (0<α<2) discrete-parameter random field using the framework of Hult and Samorodnitsky (2010). Depending on the ergodic theoretic and group theoretic structures of the underlying nonsingular group action, we observe different large deviation behaviours of this point process sequence. We use our results to study the large deviations of various functionals (e.g., partial sum, maxima, etc.) of stationary symmetric stable fields.
Keywords: Large deviations; Point processes; Stable processes; Random fields; Extreme value theory; Nonsingular group actions (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915002495
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:3:p:832-856
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.09.020
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().