Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion
Mingshang Hu and
Shaolin Ji
Stochastic Processes and their Applications, 2017, vol. 127, issue 1, 107-134
Abstract:
In this paper, we study a stochastic recursive optimal control problem in which the cost functional is described by the solution of a backward stochastic differential equation driven by G-Brownian motion. Under standard assumptions, we establish the dynamic programming principle and the related fully nonlinear HJB equation in the framework of G-expectation. Finally, we show that the value function is the viscosity solution of the obtained HJB equation.
Keywords: G-expectation; Backward stochastic differential equations; Stochastic recursive optimal control; Robust control; Dynamic programming principle (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916300795
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:1:p:107-134
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.06.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().