Stochastic differential equation for Brox diffusion
Yaozhong Hu,
Khoa Lê and
Leonid Mytnik
Stochastic Processes and their Applications, 2017, vol. 127, issue 7, 2281-2315
Abstract:
This paper studies the weak and strong solutions to the stochastic differential equation dX(t)=−12Ẇ(X(t))dt+dB(t), where (B(t),t≥0) is a standard Brownian motion and W(x) is a two sided Brownian motion, independent of B. It is shown that the Itô–McKean representation associated with any Brownian motion (independent of W) is a weak solution to the above equation. It is also shown that there exists a unique strong solution to the equation. Itô calculus for the solution is developed. For dealing with the singularity of drift term ∫0TẆ(X(t))dt, the main idea is to use the concept of local time together with the polygonal approximation Wπ. Some new results on the local time of Brownian motion needed in our proof are established.
Keywords: Random environment; Brox diffusion; White noise drift; Strong solution; Uniqueness; Local time; Itô formula (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301983
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:7:p:2281-2315
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.10.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().