EconPapers    
Economics at your fingertips  
 

Central limit theorem for functionals of a generalized self-similar Gaussian process

Daniel Harnett and David Nualart

Stochastic Processes and their Applications, 2018, vol. 128, issue 2, 404-425

Abstract: We consider a class of self-similar, continuous Gaussian processes that do not necessarily have stationary increments. We prove a version of the Breuer–Major theorem for this class, that is, subject to conditions on the covariance function, a generic functional of the process increments converges in law to a Gaussian random variable. The proof is based on the Fourth Moment Theorem. We give examples of five non-stationary processes that satisfy these conditions.

Keywords: Central limit theorem; Breuer–Major theorem; Fourth Moment Theorem; Self-similar processes (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915300156
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:2:p:404-425

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.04.014

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:2:p:404-425