Fluctuation symmetry leads to GENERIC equations with non-quadratic dissipation
Richard C. Kraaij,
Alexandre Lazarescu,
Christian Maes and
Mark Peletier
Stochastic Processes and their Applications, 2020, vol. 130, issue 1, 139-170
Abstract:
We develop a formalism to discuss the properties of GENERIC systems in terms of corresponding Hamiltonians that appear in the characterization of large-deviation limits. We demonstrate how the GENERIC structure naturally arises from a certain symmetry in the Hamiltonian, which extends earlier work that has connected the large-deviation behavior of reversible stochastic processes to the gradient-flow structure of their deterministic limit. Natural examples of application include particle systems with inertia.
Keywords: Gradient flow; GENERIC; Dynamical large deviations; Fluctuation symmetry (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491930078X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:1:p:139-170
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.02.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().