EconPapers    
Economics at your fingertips  
 

On the strong Feller property for stochastic delay differential equations with singular drift

Stefan Bachmann

Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 4563-4592

Abstract: In this paper, we prove the strong Feller property for stochastic delay (or functional) differential equations with singular drift. We extend an approach of Maslowski and Seidler to derive the strong Feller property of those equations, see Maslowski and Seidler (2000). The argumentation is based on the well-posedness and the strong Feller property of the equations’ drift-free version. To this aim, we investigate a certain convergence of random variables in topological spaces in order to deal with discontinuous drift coefficients.

Keywords: Stochastic delay differential equations; Stochastic functional differential equation; Strong feller property; Singular drift; Zvonkin’s transformation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920300247
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:4563-4592

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.01.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:4563-4592