Non-standard limits for a family of autoregressive stochastic sequences
Sergey Foss and
Matthias Schulte
Stochastic Processes and their Applications, 2021, vol. 142, issue C, 432-461
Abstract:
We examine the influence of using a restart mechanism on the stationary distributions of a particular class of Markov chains. Namely, we consider a family of multivariate autoregressive stochastic sequences that restart when hit a neighbourhood of the origin, and study their distributional limits when the autoregressive coefficient tends to one, the noise scaling parameter tends to zero, and the neighbourhood size varies. We show that the restart mechanism may change significantly the limiting distribution. We obtain a limit theorem with a novel type of limiting distribution, a mixture of an atomic distribution and an absolutely continuous distribution whose marginals, in turn, are mixtures of distributions of signed absolute values of normal random variables. In particular, we provide conditions for the limiting distribution to be normal, like in the case without restart mechanism. The main theorem is accompanied by a number of examples and auxiliary results of their own interest.
Keywords: Autoregressive model; Characteristic function; Limiting distribution; Normal distribution; Restart mechanism; Stationary distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001484
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:142:y:2021:i:c:p:432-461
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.09.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().