Limit theorems for Bessel and Dunkl processes of large dimensions and free convolutions
Michael Voit and
Jeannette H.C. Woerner
Stochastic Processes and their Applications, 2022, vol. 143, issue C, 207-253
Abstract:
We study Bessel and Dunkl processes (Xt,k)t≥0 on RN with possibly multivariate coupling constants k≥0. These processes describe interacting particle systems of Calogero–Moser–Sutherland type with N particles. For the root systems AN−1 and BN these Bessel processes are related with β-Hermite and β-Laguerre ensembles. Moreover, for the frozen case k=∞, these processes degenerate to deterministic or pure jump processes.
Keywords: Dunkl-Bessel processes; Calogero–Moser–Sutherland models; β-ensembles; Semicircle laws; Marchenko–Pastur laws; Free convolution (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492100168X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:143:y:2022:i:c:p:207-253
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.10.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().