EconPapers    
Economics at your fingertips  
 

Central limit theorem in uniform metrics for generalized Kac equations

Federico Bassetti and Lucia Ladelli

Stochastic Processes and their Applications, 2023, vol. 166, issue C

Abstract: The aim of this paper is to give explicit rates for the speed of convergence to equilibrium of the solution of the generalized Kac equation in two strong metrics: the total variation distance (TV) and the uniform metric between characteristic functions (χ0). A fundamental role in our study is played by the probabilistic representation of the solution of the generalized Kac equation as marginal law of a stochastic process which is a weighted random sum of i.i.d. random variables, where the weights are positive and dependent. Exponential bounds for the total variation distance between the solution and the gaussian stationary state of the Kac equation have been proved by Dolera, Gabetta and Regazzini (2009). In our more general setting the equilibrium states are scale mixtures of stable distributions and hence not necessarily gaussian. Therefore we develop new tools based on ideal metrics that are used in the literature for quantitative central limit theorems for i.i.d. random variables in the domain of attraction of a stable distribution. We obtain first exponential bounds in the so-called ”r-smoothed total variation” and in the weighted χr-metric for a suitable r, then we deduce rates of convergence with respect to the “corresponding” uniform metrics TV and χ0.

Keywords: Generalized Kac equation; Stable law; Central limit theorem; Ideal metrics; Uniform metrics; Pseudo-moments (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414923001989
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:166:y:2023:i:c:s0304414923001989

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2023.104226

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:166:y:2023:i:c:s0304414923001989