Euler scheme for SDEs driven by fractional Brownian motions: Malliavin differentiability and uniform upper-bound estimates
Jorge A. León,
Yanghui Liu and
Samy Tindel
Stochastic Processes and their Applications, 2024, vol. 175, issue C
Abstract:
The Malliavin differentiability of a SDE plays a crucial role in the study of density smoothness and ergodicity among others. For Gaussian driven SDEs the differentiability issue is solved essentially in Cass et al., (2013). In this paper, we consider the Malliavin differentiability for the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions (fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step size n) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations driven by fBm with Hurst parameter H>1/3 and its Malliavin derivatives.
Keywords: Rough paths; Discrete sewing lemma; Fractional Brownian motion; Stochastic differential equations; Euler scheme; Asymptotic error distributions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924001182
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104412
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().