Asymptotics for irregularly observed long memory processes
Mohamedou Ould Haye and
Anne Philippe
Stochastic Processes and their Applications, 2025, vol. 185, issue C
Abstract:
We study the effect of observing a long-memory stationary process at irregular time points via a renewal process. We establish a sharp difference in the asymptotic behaviour of the self-normalized sample mean of the observed process depending on the renewal process. In particular, we show that if the renewal process has a moderate heavy-tail distribution, then the limit is a so-called Normal Variance Mixture (NVM) and we characterize the randomized variance part of the limiting NVM as an integral function of a Lévy stable motion. Otherwise, the normalized sample mean will be asymptotically normal.
Keywords: Irregular time series; Linear processes; Long memory; Normal Variance Mixture; Short memory; Stationarity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925000729
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:185:y:2025:i:c:s0304414925000729
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104631
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().