Ladder costs for random walks in Lévy random media
Alessandra Bianchi,
Giampaolo Cristadoro and
Gaia Pozzoli
Stochastic Processes and their Applications, 2025, vol. 188, issue C
Abstract:
We consider a random walk Y moving on a Lévy random medium, namely a one-dimensional renewal point process with inter-distances between points that are in the domain of attraction of a stable law. The focus is on the characterization of the law of the first-ladder height YT and length LT(Y), where T is the first-passage time of Y in R+. The study relies on the construction of a broader class of processes, denoted Random Walks in Random Scenery on Bonds (RWRSB) that we briefly describe. The scenery is constructed by associating two random variables with each bond of Z, corresponding to the two possible crossing directions of that bond. A random walk S on Z with i.i.d increments collects the scenery values of the bond it traverses: we denote this composite process the RWRSB. Under suitable assumptions, we characterize the tail distribution of the sum of scenery values collected up to the first exit time T. This setting will be applied to obtain results for the laws of the first-ladder length and height of Y. The main tools of investigation are a generalized Spitzer-Baxter identity, that we derive along the proof, and a suitable representation of the RWRSB in terms of local times of the random walk S. All these results are easily generalized to the entire sequence of ladder variables.
Keywords: Spitzer identities; First-passage; Random walk in random scenery; Stable distributions; Lévy-Lorentz gas (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925001073
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:188:y:2025:i:c:s0304414925001073
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104666
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().